

California Enterprise Architecture Program

SOA White Paper
SOA Security

Revision History

06/30/2006 Original Draft
08/02/2006 Added new sections to Web Services Security and Identity & Authentication
09/11/2006 Revised Federated Identity section. Added placeholder for User Provisioning.

 Page 2 of 36
 California Enterprise Architecture Program

Table of Contents

SOA Documents.. 5

QuickView – SOA Security ... 6

Introduction ... 8

XML Security for Web Services ... 10
Basic Cryptographic Concepts .. 10

Asymmetric cryptography ...10
Symmetric cryptography ...11
Message digests ...11

Digital signatures .. 11
Certificates... 11
Message Integrity and User Authentication with XML Signatures.................... 11
XML Encryption ... 12

XML Encryption Processing ..12

An Introduction to Web Services Security.. 13
Web Services Security is Born... 13
Web Service Standards and Architecture ... 14

Reference Security Architecture ...14
Example Vendor WS Security Architectures ...14

XML Signatures & Encryption Example .. 16

Federated Identity and Authentication.. 19
Federated Identity Management... 19
Web Services Federation (WS-Federation) ... 19
Liberty Alliance.. 19
Microsoft .. 20
Federated Identity Standards ... 20
Federated Identity Interoperability... 21
Federated Identity Management Example ... 22
Gartner’s Hype Cycle for Identity and Access Management 23

Security Access Markup Language (SAML) ... 25
Introduction to SAML .. 25
SAML Example... 25

A Citizen Request Example .. 29
Communities of Interest Pattern ...30

 Page 3 of 36
 California Enterprise Architecture Program

 Page 4 of 36
 California Enterprise Architecture Program

User Provisioning ... 31

SOA Firewalls for Web Security... 32

Security Standards for Web Services ... 35

Web Services Message Stack Example .. 36

SOA Documents

The service oriented architecture advocated by the California Enterprise Architecture Program is
organized into a set of interrelated documents. A master guide serves as the “jumping off point” and
describes in an overview fashion the key parts of SOA.

SOA Master
Guide

SOA Documents

SOA Tools

Business Modeling
Service Modeling
BAM
BPEL

Business Modeling
Service Modeling
BAM
BPEL

SOA Service
Patterns

Consuming a basic service
Federated Interfaces
Composite Services
Enterprise Search
Federated Service Centers
RSS (Real Time Syndacation)

Atomic Web Services
Composite Web Services
Federated Web Services
Orchestrated Web Services
Enterprise Search Service
Federated Search Engines
RSS (Real Simple Syndication)

Web Services

Loosely coupled interfaces
Service, Message, Discovery
Composition Types
Web Service Types
Web Service Interfaces
Web Service Orchestration
Web Service Standards

Loosely coupled interfaces
Service, Message, Discovery
Composition types
Web Service Types
Web Service Interfaces
Web Service Orchestration
Web Service Standards

California
Service
Centers

Consolidated Service Centers
Shared Services
SOA Infrastructure
Enterprise Service Bus
Portals

Business Case
for SOA

View Business as Services (not
stove-piped apps)
Identify & Leverage Shared Services
Common Infrastructure

SOA Security

XML Security for Web Services
Cryptographic Concepts
Digital Signatures, Certificates
Message Integrity, XML Signatures
WS Security, SAML
Federated Identity
XML Firewalls

SOA Roadmap

Documents
Projects
Workgroups

There are six white papers planned to address in depth details of SOA. This whitepaper is SOA
Security.

 Page 5 of 36
 California Enterprise Architecture Program

QuickView – SOA Security

In essence, this is Web Single Sign On:

A security token is presented to a gatekeeper in order for a user to get authenticated. Now imagine that
the gatekeeper is guarding the main gate of a large building with many offices. Visitors are required to
show their ID cards and get authenticated at the main gate. The gatekeeper checks the ID card by
matching it with his internal record and then allows the visitor to enter the building.

Let's suppose that you want to visit several offices in the building. Each office has an entrance with a
gatekeeper guarding the entrance of each office. You need to get authenticated at the entrance of each
office. The gatekeeper at the entrance of each office repeats the same authentication act.

What if individual offices in the building trust the authentication performed by the gatekeeper of the
main gate? The building will become a trusted domain, of which each individual office will be a part.
Naturally if this type of trust exists between different offices, they would like to share the processing
load of the authentication act.

A possible solution to allow sharing of authentication information is to issue a temporary identification
badge to a visitor at the main gate of the building. The gatekeeper at the main gate will issue a badge to
each visitor after successful authentication. The identification badge will have a short expiry. The
visitor will show the identification badge while entering each office. The office gatekeeper will check
the validity of badge before allowing or disallowing a person to enter the office.

So, the “gatekeeper” is the Identity Authority for this office building, which, lets say, handles one type
of Citizen business (perhaps vehicle registrations). Now, let’s assume that we have a second office
building that handles a different type of citizen business (perhaps professional licensing) that also has its
own gatekeeper. If the two office buildings agree to “trust” the first gatekeeper, then we have a
“federated identity” relationship. That is, one of the gatekeeper’s is designated as the Identity
Authority (in this case, for citizens) and the other gatekeepers trust the first gatekeeper and allows
entrance to their respective buildings without re-authenticating the visitor.

Further, let’s expand our scenario and say we have an additional office building for Employees, and
another building for Business (to business) activities. Each office building could have a single
“gatekeeper”, for example an Employee Authority and a Business Authority, respectively. But, what if
a visitor is an agent that represents a business but is also a citizen and conducts both types of business?
This complicates things and probably the only reasonable solution is the visitor must be authenticated
based on the type of business they wish to transact at that point in time. If it is citizen business, then the
visitor must go to the Citizen Authority. If acting as a business agent, then the visitor must be
authenticated by the Business Authority. However, once authenticated by the Citizen Authority, the
visitor can interact with any building office that deals with citizens – as long as the office buildings are
in the same type of trusted relationship. See Identity Authorities Pattern and Communities of Interest
Pattern in this paper for more details.

Such scenarios are common in Enterprise Application Integration. Whether applications are running
within or across the boundaries of an enterprise, the sharing of authentication information forms an
important part of application integration effort. Naturally, the sharing of authentication information
prevents each application from having to perform the entire authentication process.

 Page 6 of 36
 California Enterprise Architecture Program

 Page 7 of 36
 California Enterprise Architecture Program

In the new SOA-based environment, a number of business services will contain some sort of sensitive
information and therefore, will require some level of security. Fortunately, there are a lot of choices
defined in the Security Standards for Web Services.

Since web services interoperate via XML documents (SOAP messages), the standards provide for
security details within the XML definitions. The overall XML structures for security are defined in the
WS-Security standard.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Introduction

Exchange of information over the Internet is vital but may have security implications. Security issues
over the Internet are important, because it is an insecure and untrustworthy public network
infrastructure, prone to attacks by intruders.

The information available over the Internet does not always have the same level of business confidentiality. In the
public sector, much information is intended to be accessed and viewed by anyone. However, there are a number
of business transactions that require knowing who the party is including the party’s access privileges.

Organizations usually secure company resources available on the network and online services by defining business
roles, access rights, and system policies. That's where firewalls play a role in the security process. A network
level firewall sits at the doorstep of a private network as a guard and typically provides the following
security services:

• monitors all incoming traffic;
• checks the identity of requesters trying to access specific company resources;
• authenticates user identities, which can be the network addresses of service requesters or

security tokens;
• checks security and business policies to filter access requests and verifies whether the service

requester has the right to access the intended resource; and
• provides for encrypted messages so that confidential information can be sent across the Internet.

The main purpose of a firewall is to protect the physical boundaries of a network. There is a physical
boundary of the private network and the only way to get into the network is through the firewall. While
packets of network traffic and messages pass through a firewall, they are authenticated and checked for
intrusion or malicious attacks.

When a department application interacts with an enterprise component provided by a different
department, it cannot control and may not even know much about the IT infrastructure of the other
department. For example, the first department might be using a Java solution over Solaris servers and
the second department may be using .NET or some other technology. How can interoperability between
departments be ensured?

It is not feasible to sit down with all departments and decide about messaging formats for exchange of
information and interoperability. This will create an endless task of designing and redesigning message
formats for each department. The cost of this type of legacy integration is so high that such techniques
are only feasible in high IT return private sectors, such as airline and banking industries. Most
government e-commerce isn't able to justify IT infrastructure development costs in this way.

But if applications shift from legacy integration to the Service Oriented Architecture (SOA) provided by
web services, interoperability issues are much easier to deal with. A web services-based SOA depends
on SOAP servers to process messages. A SOAP server holds only the information related to the web
services it is hosting (names of the services, names of the methods in each service, where to find the
actual classes that implement the web services, and so on) and has the capability of processing incoming
SOAP requests. However, the SOAP server itself doesn't have any capability to check whether the
incoming SOAP request is coming from an anonymous customer or a known business partner. SOAP

 Page 8 of 36
 California Enterprise Architecture Program

 Page 9 of 36
 California Enterprise Architecture Program

cannot distinguish between sensitive and non-sensitive web services and cannot perform user
authentication, authorization, and access control.

It is clear that a remote client who has accessed a SOAP server enjoys the opportunity of invoking any
method of any services hosted on the particular SOAP server. So, one might correctly conclude that it is
not safe to host web services of different levels of sensitivity on the same SOAP server.

Even if you deploy a network-level firewall to protect from intruders, you will not be able to distinguish
between different users once it has reached the SOAP server. It is possible that an intruder authenticates
himself as an anonymous user, reaches the SOAP server, and invokes sensitive web services meant for a
different user. Thus, a SOAP server is like a hole in your network.

There are two solutions to this problem:

1. Use a different SOAP server for each level of sensitivity, so that different authentication
policies can be enforced on each sensitivity level. This solution may seem appropriate for web
services today. However the real advantage of web services lies in the next generations where
web services will not just be invoked by browser-assisted human clients, but web services will
invoke each other to form chained or transactional operations. Such complex web service
infrastructure will be very hard and expensive to build with the idea of having a separate SOAP
server for each authorization policy. In addition, this idea hardly allows building reusable or
off-the-shelf security solutions.

2. The second option is to make the firewall XML and SOAP aware. The firewall will be able to

inspect SOAP messages, trying to match user roles with access lists, policy levels, and so on.
This solution is a better approach. It also allows building XML-based standard security
protocols, which can be adopted by security vendors to ensure interoperability.

Web service users can add security information (signature, security tokens, and algorithm names) inside
SOAP messages, according to the XML-based security protocols. The XML and SOAP-aware firewall
will check the message before it reaches the SOAP server, so that it is able to detect and stop intruders
before they are able to reach the service.

Based on the second approach described above, W3C and OASIS are developing several XML-based
security protocols. These protocols will define the various security features of an XML and SOAP-
aware firewall.

 Page 10 of 36
 California Enterprise Architecture Program

XML Security for Web Services
This section briefly discusses some of the high level features of security protocols from W3C and
OASIS.

The XML Signature specification is a joint effort of W3C and IETF. It aims to provide data integrity
and authentication (both message and signer authentication) features, wrapped inside XML format.

W3C's XML Encryption specification addresses the issue of data confidentiality using encryption
techniques. Encrypted data is wrapped inside XML tags defined by the XML Encryption specification.

WS-Security from OASIS defines the mechanism for including integrity, confidentiality, and single
message authentication features within a SOAP message. WS-Security makes use of the XML Signature
and XML Encryption specifications and defines how to include digital signatures, message digests, and
encrypted data in a SOAP message.

Security Assertion Markup Language (SAML) from OASIS provides a means for partner applications to
share user authentication and authorization information. This is essentially the single sign-on (SSO)
feature being offered by all major vendors in their e-commerce products. In the absence of any standard
protocol on sharing authentication information, vendors normally use cookies in HTTP communication
to implement SSO. With the advent of SAML, this same data can be wrapped inside XML in a standard
way, so that cookies are not needed and interoperable SSO can be achieved.

eXtensible Access Control Markup Language (XACML) presented by OASIS lets you express your
authorization and access policies in XML. XACML defines a vocabulary to specify subjects, rights,
objects, and conditions -- the essential bits of all authorization policies in today's e-commerce
applications.

Basic Cryptographic Concepts
The discussion of message integrity, user authentication, and confidentiality employs some core
concepts: keys, cryptography, signatures, and certificates. Following, cryptographic basics will be
briefly discussed.

Asymmetric cryptography
A popular cryptographic technique is to use a pair of keys consisting of a public and a private key.
First, you use a suitable cryptographic algorithm to generate your public-private key pair. Your public
key will be open for use by anyone who wishes to securely communicate with you. You keep your
private key confidential and do not give it to anybody. The public key is used to encrypt messages,
while the matching private key is used to decrypt them.

In order to send you a confidential message, a person may ask for your public key. He encrypts the
message using your public key and sends the encrypted message to you. You use your private key to
decrypt the message. No one else will be able to decrypt the message, provided you have kept your
private key confidential. This is known as asymmetric encryption. Public-private key pairs are also
sometimes known as asymmetric keys.

 Page 11 of 36
 California Enterprise Architecture Program

Symmetric cryptography
There is another encryption method known as symmetric encryption. In symmetric encryption, you use
the same key for encryption and decryption. In this case, the key has to be a shared secret between
communication parties. The shared secret is referred to as a symmetric key. Symmetric encryption is
computationally less expensive than asymmetric encryption. This is why asymmetric encryption is
ordinarily only used to exchange the shared secret. Once both parties know the shared secret, they can
use symmetric encryption.

Message digests
Message digests are another concept used in secure communications over the Internet. Digest
algorithms are like hashing functions: they consume (digest) data to calculate a hash value, called a
message digest. The message digest depends upon the data as well as the digest algorithm. The digest
value can be used to verify the integrity of a message; that is, to ensure that the data has not been altered
while on its way from the sender to the receiver. The sender sends the message digest value with the
message. On receipt of the message, the recipient repeats the digest calculation. If the message has
been altered, the digest value will not match and the alteration will be detected.

But what if both the message and its digest value are altered? That kind of change may not be
detectable at the recipient end. So a message digest algorithm alone is not enough to ensure message
integrity. That's where we need digital signatures.

Digital signatures
Keys are also used to produce and verify digital signatures. You can use a digest algorithm to calculate
the digest value of your message and then use your private key to produce a digital signature over the
digest value. The recipient of the message first checks the integrity of the hash value by repeating the
digest calculation. The recipient then uses your public key to verify the signature. If the digest value
has been altered, the signature will not verify at the recipient end. If both the digest value and signature
verification steps succeed, you can conclude the following two things:

• The message has not been altered after digest calculation (message integrity); and
• The message is really coming from the owner of the public key (user authentication).

Certificates
In its most basic form a digital certificate is a data structure that holds two bits of information:

1. The identification (e.g. name, contact address, etc.) of the certificate owner (a person or an
organization).

2. The public key of the certificate owner.

A certificate issuing authority issues certificates to people or organizations. The certificate includes the
two essential bits of information, the owner's identity and public key. The certificate issuing authority
will also sign the certificate using its own private key; any party can verify the integrity of the certificate
by verifying the signature.

Message Integrity and User Authentication with XML Signatures
The XML Signature specification, XML Digital Signature, (XMLDS) has been jointly developed by
W3C and IETF. It has been released as a recommendation by W3C. XML Signature defines the

 Page 12 of 36
 California Enterprise Architecture Program

processing rules and syntax to wrap message integrity, message authentication, and user authentication
data inside an XML format.

As an example, a department includes message integrity and user authentication information within a
SOAP method invocation. The XML firewall of the department receiving the message, on receipt of the
invocation, will need to look into the SOAP message to verify that:

• The message has not been altered while on its way to the web service (message integrity); and
• The requester is really the trusted user (user authentication).

The XML firewall will only let the request pass onto the SOAP server if both these conditions are met.
It should be noted that XMLDS, isn't SOAP-specific. XMLDS can be used to insert signatures and
message digests into any XML instance, SOAP or otherwise.

An XMLDS implementation can create SOAP headers to produce signed SOAP messages. The XML
firewall sitting at the recipient's end will process the SOAP header to verify the signatures before
forwarding the request to the SOAP server. We can achieve the following two security objectives
through this procedure:

• We can verify that the SOAP message that we received was really sent by the sender we think it
came from.

• We can verify that the data we received has not been changed while on its way and is the same
that the sender intended to send.

XML Encryption
The XML Encryption specification satisfies confidentiality requirements in XML messages. XML
encryption offers several features.

• You can encrypt a complete XML file.
• You can encrypt any single element of an XML file.
• You can encrypt only the contents of an XML element.
• You can encrypt non-XML data (e.g. a JPG image).
• You can encrypt an already encrypted element (i.e., "super-encryption").

XML Encryption Processing
How will our XML firewall work with these encryption concepts? It will receive SOAP messages with
encrypted elements or content and translate the contents to a decrypted form before forwarding the
decrypted SOAP message request to the SOAP server.

The recipient of an XML encrypted file will decrypt the XML encrypted file in the following sequence:

1. Extract the encrypted content of the CypherValue element.
2. Read the algorithm attribute value of the EncryptionMethod element.
3. Read the Type attribute values of the EncryptedData element.
4. Obtain the keying information form the ds:KeyInfo element.
5. Use the information gathered in steps 1, 2, 3, and 4 to construct the plain text (decrypted) file.

An Introduction to Web Services Security

Web Services Security is Born

Microsoft introduces the notion of Web Services in 2001. They were a cornerstone in the .NET
architecture vision.

IBM, Microsoft, and Verisign jointly released a security whitepaper in April 2002 title “Security in a
Web Services World: A Proposed Architecture and Roadmap.”
 http://www-128.ibm.com/developerworks/library/specification/ws-secmap/

“This document describes a proposed strategy for addressing security within a Web service
environment. It defines a comprehensive Web service security model that supports, integrates and
unifies several popular security models, mechanisms, and technologies (including both symmetric and
public key technologies) in a way that enables a variety of systems to securely interoperate in a
platform- and language-neutral manner. It also describes a set of specifications and scenarios that show
how these specifications might be used together”

This was a landmark document and the basis for the current standards today. It provided the following
roadmap:

WS-SecureConversation WS-Federation WS-Authorization

WS-Policy WS-Trust WS-Privacy

WS-Security

SOAP Foundation

Web Services Security - 2002 Roadmap

2002

Submitted to OASIS by IBM, Microsoft, and Verisign
April, 2002

At the time of its release, there was agreement on SOAP Foundation and WS-Security. The upper
layers were a vision at this point with details to be worked out. The paper was submitted to OASIS
(Organization for the Advancement of Structured Information Standards). This included the notion of
Security Tokens and defined Unsigned (Username), Signed (X.509 Certificates, SAML, and Kerberos
Tickets). The paper also defined the vocabulary used in today’s standards.

 Page 13 of 36
 California Enterprise Architecture Program

http://www-128.ibm.com/developerworks/library/specification/ws-secmap/

Web Service Standards and Architecture
In the past four years, many companies have joined the development of web security standards building
on the 2002 base. In addition to completing the 2002 roadmap, many new WS* standards were
determined along the way. Below is the Reference Security Architecture which has been annotated to
briefly explain the purpose of each standard.

Reference Security Architecture

Example Vendor WS Security Architectures
Vendors implement the above standards in a manner that best positions them in a very competitive
world. So, their diagrams may look a bit different, and not all vendors support all the standards.
However, regardless of how vendors name their products and their components they should meet the
same standards. This implies a high degree of interoperability among vendor web service products. In
fact, this is a key principle of web services. The notion of location transparency, language and platform
agnostic are the reason web services hold a lot of promise.

Microsoft is an avid supporter of web services and they have built native support into their .NET
Framework, as well as their integrated development environment Visual Studio.

 Page 14 of 36
 California Enterprise Architecture Program

Below is the current WS* stack from Microsoft’s perspective.

Web Service Security

WS-Security
Policy
Defines

assertions to
express security

requirements

WS-Secure Conversation
Shared security context/session

WS-Trust
Security token issuance,

renewal, cancellation, validation.

WS-Security
Framework for applying security using SOAP messaging

Messaging: SOAP, WS-Addressing, MTOM

XML

M
edadata: W

S-Policy

Microsoft Windows Communication Framework
Note: WCF
Implements

WS-Federation
for Identity

management.

WSE 3.0 and
WCF support
SAML tokens

Note, this diagram is very similar to the Reference Security Architecture. Microsoft currently
implements web services security in its Web Services Enhancements (WSE) product. WSE is not
integrated with current production versions of Windows; however it is readily available via download
and installs easily. WSE 3.0 added support for SAML tokens. Microsoft plans to implement the full
suite of standards depicted in the above diagram in Windows Communication Framework which will be
integrated with Windows Vista. This has a scheduled production date sometime in 2007.

IBM has also been a strong supporter of web services security and co-authored the original plan. They
have built support into their current WebSphere line of products for the full stack. As an alternative,
they also support the Liberty Alliance Framework and its underlying SAML-based architecture.

Following is the current WS* stack from IBM’s perspective.

 Page 15 of 36
 California Enterprise Architecture Program

In additional to message authentication, the WS-Security standard defines message integrity, message
confidentiality. The two standards that define integrity and confidentiality are XML Signatures and
XML Encryption.

XML Signatures & Encryption Example
The Web Services Security (WSS) specification from OASIS defines the details of how to apply XML
signature and XML encryption concepts in SOAP messaging. WSS relies on XMLDS and XML
encryption for low level details and defines a higher-level syntax to wrap security information inside
SOAP messages.

WSS describes a mechanism for securely exchanging SOAP messages. It provides the following three
main security features:

1. Message Integrity
2. User Authentication
3. Confidentiality

It is an example SOAP message that carries security information according to the WSS syntax. Notice
the request's header is carrying digital signature information.

<?xml version="1.0" encoding="utf-8"?>
<SOAP:Envelope
 xmlns:SOAP="http://www.w3.org/2001/12/soap-envelope"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <SOAP:Header>
 <wsse:Security>

 Page 16 of 36
 California Enterprise Architecture Program

 Page 17 of 36
 California Enterprise Architecture Program

 <wsse:BinarySecurityToken
 ValueType="wsse:X509v3"
 EncodingType="wsse:Base64Binary"
 wsu:Id="MyCertificate">
 LKSAJDFLKASJDlkjlkj243kj;lkjLKJ...
 </wsse:BinarySecurityToken>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml -exc-c14n# "/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#myRequestBody">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>BSDFHJYK21f...</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 GKLKAJFLASKJ52kjKJKLJ345KKKJ...
 </ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#MyCertificate"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </SOAP:Header>
 <SOAP-ENV:Body>
 <s:GetMyAccountBalances
 xmlns:s=“http://ftb.ca.gov/partnerservice/”
 ID="myRequestBody">
 <!--Parameters passed with the method call-->
 </s:GetMyAccountBalances>
 </SOAP-ENV:Body>

Here are the simple points about the above listing that will help you understand WSS syntax:

1. The SOAP:Envelope element contains namespace declarations for SOAP, WSS, and
XMLDS.

2. The SOAP:Header element contains just one child element (wsse:Security), which is the

wrapper for all the security information. The wsse:Security element has two child
elements, namely a wsse:BinarySecurityToken element and a ds:Signature
element.

 Page 18 of 36
 California Enterprise Architecture Program

3. The wsse:BinarySecurityToken element contains a security token. A security token is
like a security pass or an identity card that you are required to show if you want to enter a
restricted access area. There are several types of electronic security tokens.

The most popular and widely used security token is a login-password pair, like the one you use
while checking your e-mail.

A login-password pair is a human readable security token. There are some security tokens that
are in binary form (and therefore not necessarily human readable). Such tokens are referred to
as binary security tokens. For example an X509 certificate (a widely popular format for digital
certificates developed by ITU-T) is a binary security token.

The ValueType attribute of the wsse:BinarySecurityToken element tells what type of
binary security token is wrapped inside this BinarySecurityToken element. The
ValueType attribute contains wsse:X509v3 as its value, which identifies X509 certificates.

The EncodingType attribute of the wsse:BinarySecurityToken element tells the
encoding of the binary security token. As already explained, it is not possible to wrap
binary data inside XML format as such. Therefore, we have to encode binary data
(usually as a sequence of base-64 encoded values) before wrapping inside XML. The
X509 certificate is wrapped inside the wsse:BinarySecurityToken element as the
element content.

4. The ds:Signature element is the same as the one we discussed in the section on XML
signatures. Note two important things:

• Look at the URI attribute of the Reference element. Its value (#myRequestBody) is a

fragment identifier that points toward the SOAP:Body element. This means that the
SOAP:Body element is the one that we have signed and wrapped the signature in XMLDS
tags.

• Secondly, also look at what the ds:KeyInfo element contains. It is a

wsse:SecurityTokenReference element. The
wsse:SecurityTokenReference element contains references to security tokens. In
our case, it has a child element named wsse:Reference, whose URI attribute points
toward the wsse:BinarySecurityToken element discussed in point 3 above. This
means that the public key inside the X509 certificate (which the
wsse:BinarySecurityToken element wraps) will be used to verify the signature.

Federated Identity and Authentication

Federated Identity Management
Authentication means verifying the identity of a user. When you check your e-mail, you enter your
username and password to get authenticated. It is assumed that you have kept your password
confidential. Therefore the knowledge of your password is used to make sure that you are the one who
is trying to check your email. This is a weak form of authentication.

Similarly, one can use a stronger form of authentication such as certificates. An X509 certificate can be
wrapped within the SOAP header. The certificate is actually a security token (just like a password) that
the recipient of the WSS message can use in order to authenticate the user before allowing access to a
web service.

In additional to X.509 Certificates, the WS-Security standard supports other types of strong
authentication, such as SAML and Kerberos. SAML (Security Access Markup Language) is an OASIS
standard that is supported by both WS-Federation and Liberty Alliance. Kerberos is supported by WS-
Federation, but not Liberty.

In a federated identity environment, an entity may be associated with more than one identity provider.
The mechanisms employed by each provider may be of different strengths and some application
contexts may require a minimum to accept the claim to a given identity.

For example, this means a person could enter any application in a trusted domain with a specific identity
assertion. The identity providers associated with this trusted domain will sort out whether or not this
particular identity can be authenticated and to what level.

Web Services Federation (WS-Federation)
WS-Federation was first defined in July 2003 by IBM, Microsoft, BEA, Verisign, and RSA Security.
WS-Federation is part of an overall effort to build a web services security framework. The specification
includes WS-Language which defines how different security realms broker identities. It also includes
Passive Requestor Profile which describe how federation helps provide identity services to HTTP 1.1-
based browsers, Web-enabled cell phones and devices; and Active Requestor Profile which does the
same for applications based on SOAP and other smart clients.

Liberty Alliance
The Liberty Alliance, a consortium representing organizations from around the world, was created in
2001 to address the technical, business, and policy challenges around identity and identity-based Web
services. (http://www.projectliberty.org/index.php). Today, it has more than 150 member companies
including IBM, Sun, SAP, Oracle, BEA, and HP.

Liberty Alliance produced an Identity Framework. It is based on SAML (Security Access Markup
Language) – another OASIS standard. SAML is a security token framework. Microsoft, who is not a
member of Liberty, recently provided support for SAML 2.0 at the token profile level. However,
Microsoft uses the WS-Federation framework instead of the Liberty framework.

 Page 19 of 36
 California Enterprise Architecture Program

http://www.projectliberty.org/index.php

Microsoft
Microsoft originally created .NET Passport to handle network identity. This product was renamed to
Passport Network. Recently, it was re-branded to Windows Live ID and is used by consumers and
participating merchants that want a seamless authentication experience while avoiding managing
credentials.

WSE (Web Services Extensions) Toolkit was first released December, 2002 and supported WS-
Security. WSE 2.0 was released July 2003 and added a message-based object model and additional
support for WS-Security, WS-Policy, WS-SecurityPolicy, WS-Trust, WS-SecureConversation, and WS-
Addressing. WSE 3.0 was released November, 2005 and added support for MTOM (Message Transport
Optimization Mechanism), and SAML Secure Token Service (STS). Note that WSE is a separate
download and an add-on to the current Windows platform.

WCF (Windows Communications Framework), code named Indigo, is the future. WCF will be
integrated with Windows Vista (the next Windows platform) due in 2007. Among other enhancements,
WCF will provide support for federated identity via WS-Federation.

Federated Identity Standards
The primary method for achieving federated identity management has been via Liberty Alliance and
SAML. The Liberty Identity Framework (ID-FF) employs an architecture known as HTTP Redirect.
ID-FF is based on the SAML protocol (an OASIS standard) to handle credentials via a “security token”.
Since ID-FF is primarily Web browser-based, it is classified passive (Passive Requestor Profile).

 Page 20 of 36
 California Enterprise Architecture Program

In contrast, WS-Federation (an OASIS standard), also a federated identity framework but broader based.
It supports not only SAML, but also Kerberos, Username/Password, and X.509 Certificates. It is
anticipated that at some point Liberty Alliance and WS-Federation will merge into one standard for
federated identity management.

Federated Identity Interoperability
One of the key reasons for federated identity is Web Single-Sign On (SSO). Users typically have to log
onto multiple systems and remember multiple passwords. This is also a security problem because
sensitive user information is maintained in multiple locations, often containing different information

The idea of SSO is for users to log on once, and then their identity is “trusted” by other applications that
participate in the trusted relationship. Liberty Alliance introduced this concept with the notion of
“identity providers”. Regardless of how users get to your website, they will be redirected to an
appropriate identity provider to be authenticated. Once they have been successfully authenticated, they
will be returned to your site with a set of “credentials” –often in the form of a SAML message.

Theoretically, different departments within California could employ different identity frameworks and
tokens which would still interoperate as long as they adhered to WS-Security standards and Liberty
Alliance. For example, the following diagram shows mixing Liberty and WS-Security frameworks as
well as various token types. Protocol conversion is handled by a Federated Server.

 Page 21 of 36
 California Enterprise Architecture Program

DMV
(Liberty/SAML)

EDD
(WS-Federation/

SAML)

FTB
(WS-Federation/

Kerberos)

SCO
(WS-Federation/

X.509 Certificates)

Federated
Server

(Protocol Converter)

California Identity Trusted Domain

Multi-Protocol Identity Federation
Security Providers Interoperability

Note:
Example Only

Protocol conversion
defined in WS-Trust

While this works it makes more sense to choose a single token definition such as SAML. Eventually,
Liberty Alliance and WS-Federation will merge, so either (or a combination of them) could be used for
the framework.

Federated Identity Management Example
To simplify identity management, a single department could be designated to handle identities of the
same type. For example, State Controllers Office might handle State employees, Department of Motor
Vehicles citizens, and Los Angeles County local government.

Businesses are a bit more complicated. It is likely that multiple identity providers will be needed to
handle the diverse nature of business types. For example, Secretary of State might the authority for
employers, and Department of Health Services might handle health care providers.

An identity service might be running at a centralized location (California Service Center in the
following example) which would determine if identity must be established based on the selected user
interaction. This service would then invoke the appropriate identity authority and return the appropriate
basic credentials, disapproval code, or an error.

 Page 22 of 36
 California Enterprise Architecture Program

Identity Authorities Pattern

Gartner’s Hype Cycle for Identity and Access Management
Most people are aware of Gartner’s “Magic Quadrants” and vendors strive to position themselves in the
upper right hand quadrant. However, Gartner also provides a series of “Hype Cycles” which track
topics along a maturity curve. The Hype Cycle for Identity and Access Management Technologies
shows Federated Identity Management, User Provisioning, and Reduced Sign-On as all being in the
“Slope of Enlightenment” area which means they are fairly mature and people are successfully using
these technology components.

 Page 23 of 36
 California Enterprise Architecture Program

 Page 24 of 36
 California Enterprise Architecture Program

Security Access Markup Language (SAML)

Introduction to SAML
SAML is an XML vocabulary that defines the syntax necessary to exchange identity information
between applications. The identity information is exchanged in the form of assertions. A security
provider service is responsible for providing assertions about its trusted partners and therefore acts as an
SAML assertion authority.

For example, the California Service Center (CSC) might request an assertion from the Secretary of State
Business Provider Service (a SAML authority). CSC is a requester application and the subject of the
assertion as well. After getting the assertion from the provider service, CSC will wrap the assertion in a
WSS message and send the WSS message to the appropriate department application. The receiving
department will rely on the assertion to decide whether to allow access to its application. The receiving
department is a relying party. Notice that the SAML specification does not define any security
attributes by itself. SAML users are expected to design their own security attribute namespaces.

SAML Example
In the following listing, we have wrapped an SAML assertion in a WSS message.

In order to understand what information this listing contains, you need to compare it with the previous
listing in #An Introduction to Web Service Security. There are some differences between the two:

1. There is no BinarySecurityToken element in the following listing. Instead of a security
token, we have an assertion. The Assertion element appears as a child of the
wsse:Security element, just like the BinarySecurityToken element in the first
listing.

2. There are two ds:Signature elements in the following listing. The first appears within the

Assertion element. The SAML authority produced this signature while issuing the
assertion, so that any application who receives this assertion can verify its integrity. We have
not shown the details of this signature for the sake of simplicity.

The second ds:Signature appears as a direct child of the wsse:Security element. This
signature is from our SAML authority, which produced the signature over the
GetMyAccountBalances element in the SOAP body while authoring the request.
Compare the ds:Signature element in previous listing with the ds:Signature element
in the following listing. Both these Signature elements were produced by the application.
The one difference is their ds:KeyInfo elements.

In the previous listing, the ds:KeyInfo element referred to the certificate wrapped inside the
BinarySecurityToken element. But in this the following listing, there is no
BinarySecurityToken element. Instead, we have an Assertion element acting as a
security token. Therefore it makes sense to refer to the assertion from the ds:KeyInfo
element.

 Page 25 of 36
 California Enterprise Architecture Program

 Page 26 of 36
 California Enterprise Architecture Program

3. As already explained, the ds:KeyInfo element in the following listing refers to the assertion.
When the message reaches the relying party, they will need to validate the signature in order to
verify requester's identity as well as the integrity of the message. Therefore the recipient will
need a public key to verify the signature. Where is the public key that the application can use to
verify the signature? The Assertion element is the most relevant place to look for the public
key.

There is only one key inside the Assertion element. Its name is "MyKey". The application
will use this key to verify the signature.

4. Notice the SubjectConfirmation element within the Assertion element, which
specifies the relationship between the subject and the author of the message that contains the
assertion.

The SubjectConfirmation element should specify that the subject authored the message
that contains this assertion. The SubjectConfirmation element has two child elements,
namely a SubjectConfirmation and a ds:KeyInfo element. The two child elements
form a pair.

The ConfirmationMethod element wraps the string identifier for the holder-of-key method
that we discussed earlier. The holder-of-key method simply specifies that the author of this
message is the subject of the assertion and it holds the key wrapped by the accompanying
ds:KeyInfo element. Notice that the accompanying ds:KeyInfo element, which is a
sibling of the ConfirmationMethod element, wraps the key named "MyKey"

I have already said that the tour operator uses the same key (named MyKey) to sign the
GetMyAccountBalances element. This provides a link between the WSS message author
and the subject of the assertion. The application will simply need to verify the integrity of the
assertion (by verifying the signature of the SAML authority) and the signature of the requesting
application. If the two signatures validate, the recipient application can be sure that the
assertion is not fake and it is really asserting the author of the WSS message.

<?xml version="1.0" encoding="utf-8"?>
<SOAP:Envelope
 xmlns:SOAP="http://www.w3.org/2001/12/soap-envelope"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <SOAP:Header>
 <wsse:Security>
 <saml:Assertion
 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
 MajorVersion=”1”
 MinorVersion=”0”
 AssertionID=”http:// ftb.ca.gov/AuthenticationService/SAMLAssertions/786”
 Issuer=”http:// ftb.ca.gov”
 IssueInstant=”2003-03-11T02:00:00.173Z”>
 <Conditions
 NotBefore=”2003-03-11T02:00:00.173Z”
 NotOnOrAfter=”2003-03-12T02:00:00.173Z”/>
 <AttributeStatement>
 <Subject>

 Page 27 of 36
 California Enterprise Architecture Program

 <NameIdentifier
 NameQualifier=”http:// ftb.ca.gov”>
 MyTourOperator
 </NameIdentifier>
 <SubjectConfirmation>
 <ConfirmationMethod>
 urn:oasis:names:tc:SAML:1.0:cm:holder-of-key
 </ConfirmationMethod>
 <ds:KeyInfo>
 <ds:KeyName>MyKey</ds:KeyName>
 <ds:KeyValue> ... </ds:KeyValue>
 </ds:KeyInfo>
 </SubjectConfirmation>
 </Subject>
 <Attribute
 AttributeName=”CitizenStatus”
 AttributeNamespace=”http:// ftb.ca.gov /AttributeService”>
 <AttributeValue>TaxLevel5</AttributeValue>
 </Attribute>
 </AttributeStatement>
 <ds:Signature>...</ds:Signature>
 </saml:Assertion>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml -exc-c14n# "/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#myRequestBody">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>BSDFHJYK21f...</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 GKLKAJFLASKJ52kjKJKLJ345KKKJ...
 </ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference
 <wsse:KeyIdentifier wsu:id="SAML786Identifier"
 ValueType=”saml:Assertion”>
 http:// ftb.ca.gov /AuthenticationService/SAMLAssertions/786
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </SOAP:Header>
 <SOAP-ENV:Body>
 <s: MyAccountBalances
 xmlns:s=“http:// ftb.ca.gov/partnerservice /”

 Page 28 of 36
 California Enterprise Architecture Program

 ID="myDiscountRequestBody">
 <!--Parameters passed with the method call-->
 </s: MyAccountBalances>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A Citizen Request Example
Let’s illustrate the above security principles in an example scenario. In this case, a citizen will apply for
a professional license (doctor, dentist, real estate, CPA, etc.). They will first go to the new California
Service Center which will have a link (or picture, or button) they can clink on to start the online
application process.

California Home

Apply Professional
License

California Service Center

Basic
Crendentials

(Citizen)

California Home

Identification
Form

California Home

Registration screen
(appropriate

authority)

Identification Application

Begin Identify Display
Login Authenticate Identified

Register
Redirect

Process
Request

Y

Y

N

http://portal.ca.gov/ApplyProfessionalLicense?identify=Y&identifyAs=citizen

WS-Security
Authentication Types

User ID/Pass
Kerberos Tickets
SAML
X.509 Certificates

Citizen Authority (DMV)

Citizen Provider Service

WSS
Msg

Note: SAML is the preferred type for Federation

Notice, the onclick action is encoded with two parameters: identify=y and identifyAs=citizen. The CSC
web application will check these parameters and invoke the Identity process if required. In this case,
because we want to be identified as a Citizen, a request will be sent to the DMV Citizen Provider
Service – which, for the purpose of this illustration, we have designated DMV as the Authority for
identifying citizens within the State.

In reality, one would not embed the above parameters in the URL since they would appear as clear text
on the browser status line. Rather, they would be hidden form variables and sent via the HTML POST
method.

The Citizen Provider Service will return a WSS message (Web Services Security message) containing
the basic credentials for this person. It will be up to the appropriate architects with the State to define
the exact details of basic credentials. The CSC web application will then redirect the request to the
appropriate department application to handle the actual professional license application process.

Let’s say CSC invoked a Professional License web application managed by the Department of
Consumer Affairs (DCA). The DCA application would look at the SOAP message and then send a
request to the DMV Citizen Provider Service. It would receive a return message containing the
authentication status and basic credentials.

 Page 29 of 36
 California Enterprise Architecture Program

Communities of Interest Pattern
The DCA Professional License application would then consume services at a University to verify that
this person had the appropriate degree. It would also consume a service at the appropriate Exam Board
to verify that this person had a proper license. Additionally, it would consume the Criminal Background
Check service at DOJ, which might send a message to the Federal Social Security Administration Verify
SSN service to confirm the SSN.

Notice there are three circles of trusts. In the above example because DMV, DTS, DCA and DOJ are
part of the Identity Circle of Trust, DCA and DOJ will use the identity information initiated by DTS and
provided by DMV. Further, because Universities and Exam Boards and in the Academic Verification
Circle of Trust, they will use the identity information passed to them by DCA.

However, if DOJ were to invoke a service at an Exam Board that required identification, it would not be
honored because they are not part of the same circle of trust. So, re-identification would be required.

Also keep in mind that different types and levels of security can be used. That is, one might use
certificates, PKI, Kerberos, or other types of tokens. They are all part of the WSS standards.

 Page 30 of 36
 California Enterprise Architecture Program

 Page 31 of 36
 California Enterprise Architecture Program

User Provisioning
This section will be detailed in a future release.

 Page 32 of 36
 California Enterprise Architecture Program

SOA Firewalls for Web Security
Use of SOAP and XML can expose new risks to your organization that could potentially let intruders
penetrate core business services. Packet-level firewalls can't help you secure Web services traffic
because they can't detect SOAP and XML traffic. For example, because SOAP typically uses HTTP or
SMTP, it easily passes through traditional firewalls—a phenomenon known as the port 80 problem.
Therefore, a new kind of “firewall” has appeared: the Edge Enforcement Agent, which can enforce
security policy embedded inside a SOAP message.

Like HTML, XML is a markup language that provides a platform-independent standard for exchanging
information between systems on the intranet and Internet. HTML differs from XML, however. HTML
is static: It provides a finite set of ways to structure text information. When new needs arise, the HTML
standard must be updated to accommodate them. In contrast, XML is a more abstract markup language
that provides built-in extensibility through a schema that you define.

Using XML provides a way to format or structure data and commands or transaction requests. Two
applications that support the same XML schema can easily exchange data and request transactions. But
although XML lets you assemble a message, it doesn't address getting the message from the client to the
server and back again. That task is the job of a protocol—SOAP, in the case of Web services.

SOAP gives applications a way to send XML-based messages over a network within HTTP or SMTP.
When one application needs another application's services, the first application formats a service request
(i.e., a function name and parameters) into XML, then packages the request in a SOAP envelope and
sends it. The target application opens the envelope, executes the request, then uses SOAP to return a
response. Environments such as Windows .NET Framework let the application developer work at a high
level of abstraction, but the Framework still relies heavily on SOAP and XML, so related security
concerns still come into play.

Because of XML's platform-independent nature and its ability to let disparate systems interface easily,
most Web services use well-known XML schemas and consequently are vulnerable to a much broader
variety of potential attacks than are narrower technologies such as Distributed COM (DCOM) and EDI.
As a result, you face a greater likelihood of people sniffing the data, non-authenticated clients directly
connecting to and trying to retrieve data from your Web services server, and Denial of Service (DoS)
attacks that use malformed messages to exploit a well-known schema.

Traditional firewalls, which look at the world in terms of IP addresses, ports, and protocols, address
risks that occur at a much lower level than the level at which SOAP and XML reside. Instead of
determining whether to pass a given packet to the internal network, SOA firewalls validate traffic in
terms of Web services, individual messages, and data elements and evaluate whether to let a given
requester access a specific operation. XML-embedded malware, such as worms, Trojan horses, and
DoS attacks, are risks with SOAP and XML.

You can address SOAP/XML security concerns three ways. First, if your use of SOAP/XML is light
and limited to a stable set of partners, you might be able to get by with a classic firewall. However, the
vendor must enhance the firewall so that it can at least recognize SOAP within HTTP and other
protocols. You can then enable SOAP and XML content between your organization and its trusted
business partners and block everything else.

A second option for SOAP/XML firewalls is to build your own. Although probably not an appealing
alternative for most organizations, building your own firewall is possible, and tools exist to help you do

http://www.windowsitpro.com/Windows/Articles/ArticleID/39755/pg/2/2.html##

the job. For example, Microsoft Internet Security and Acceleration (ISA) Server 2000 lets you write
Internet Server API (ISAPI) filters on an ISA server, and Microsoft provides a model ISAPI filter for
validating SOAP/XML messages while they're at the ISA server.

The third, and usually best, option is an application-level SOA firewall that operates behind your classic
firewall to validate only SOAP/XML traffic. Similar to a proxy, this type of product receives the Web
service message as though the application-level firewall were actually the Web service. These products
inspect the message; authenticate the person, program, or organization that sent it; then verify that the
sender is authorized to the Web service and the requested operation. Authentication can use a simple
username and password, a certificate, or a federated system that uses Security Assertion Markup
Language (SAML).

An Edge Enforcement Agent can authenticate credentials against sources such as a Lightweight
Directory Access Protocol (LDAP) directory (e.g., Active Directory—AD) or a Remote Authentication
Dial-In User Service (RADIUS) server. Then, the agent checks the requested Web service and
operation and the data elements (i.e., parameters) within the message to make sure the request is valid
and authorized for the user. Either before or after authentication, depending on the product, the agent
weeds out malformed messages and DoS attacks by ensuring that the request's format complies with the
corresponding schema. The agent forwards messages that pass these checks to the appropriate Web
service.

Most agents also provide some type of audit functionality and logging so that you can monitor what's
happening with your Web services. Because encryption and XML parsing are CPU-intensive, this more
complex proxy architecture is important to implementing SOA firewalls in high-security and high-
volume Web service scenarios. Because SOAP/XML supports security at the transport level, a SOA
firewall can use Secure Sockets Layer (SSL) and Transport Layer Security (TLS) to encrypt the entire
HTTP-based message stream.

But sometimes you need to be able to encrypt or digitally sign portions of an XML document—to
facilitate multiparty transactions, for example. The XML Encryption and XML Signature security
standards meet these intra-document cryptography needs. Because a SOA firewall functions as a proxy
 Page 33 of 36
 California Enterprise Architecture Program

 Page 34 of 36
 California Enterprise Architecture Program

Web service, all authentication, encryption, and decryption take place at the firewall, letting you
centrally and consistently control authentication, encryption, and policy checks even if Web services are
scattered on servers throughout your network. Another advantage is that, because only decrypted traffic
can be inspected, encrypted content is decrypted at the firewall and compared against the firewall's
policy.

Also keep in mind that an Enterprise Service Bus can enforce message security. So, one might use a
combination of XML-aware firewalls and an ESB.

Security Standards for Web Services

Web services are still evolving and as a result there are a large number of standards. Here is a quick list
of some of the more important security standards related to web services. There are many more
standards, so for a more complete lists see Web Services White Paper “Web Service Standards” section.

Standards Organizations:
W3C - World Wide Web Consortium http://www.w3.org/

OASIS – Organization for the Advancement of Structured Information Standards http://www.oasis-
open.org/home/index.php

WS-I – Web Services Interoperability Organization - Provides interoperability standards in the form of
Profiles. http://www.ws-i.org/ Current profiles include:

• Basic Profile (V1.0, V1.1, Simple SOAP Binding Profile 1.0)
• Attachments Profile 1.0
• Basic Security Profile (V1.0, Security Scenarios)

Liberty Alliance - http://www.projectliberty.org/

Security Standards:
WS-Security http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
WS-Trust/Secure Token Service http://www-128.ibm.com/developerworks/library/specification/ws-
trust/
WS-Provisioning http://www-128.ibm.com/developerworks/library/specification/ws-provis/
WS-Federation http://www-128.ibm.com/developerworks/library/specification/ws-fed/
WS-Authorization
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.express.do
c/info/exp/ae/cwbs_wssv6chron.html

WS-Policy http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
WS-Privacy http://www.webserviceshelp.org/wsh/Standards/Web+Services+Security/WS-
Privacy.htm
SAML (Secure Access Markup Language) http://en.wikipedia.org/wiki/SAML
WS-SecureConversations http://www-128.ibm.com/developerworks/library/specification/ws-secon/

 Page 35 of 36
 California Enterprise Architecture Program

http://www.cio.ca.gov/ITCouncil/Committees/ArchStandards.html
http://www.w3.org/
http://www.oasis-open.org/home/index.php
http://www.oasis-open.org/home/index.php
http://www.ws-i.org/
http://www.projectliberty.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www-128.ibm.com/developerworks/library/specification/ws-trust/
http://www-128.ibm.com/developerworks/library/specification/ws-trust/
http://www-128.ibm.com/developerworks/library/specification/ws-provis/
http://www-128.ibm.com/developerworks/library/specification/ws-fed/
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/cwbs_wssv6chron.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/cwbs_wssv6chron.html
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://www.webserviceshelp.org/wsh/Standards/Web+Services+Security/WS-Privacy.htm
http://www.webserviceshelp.org/wsh/Standards/Web+Services+Security/WS-Privacy.htm
http://en.wikipedia.org/wiki/SAML
http://www-128.ibm.com/developerworks/library/specification/ws-secon/

Web Services Message Stack Example

HTTP

Policy

Security Policy

Addressing

Routing

Payload

Security

SOAP

Web Services Message with Security Example

 Page 36 of 36
 California Enterprise Architecture Program

	
	SOA Documents
	
	 QuickView – SOA Security
	 Introduction
	 XML Security for Web Services
	Basic Cryptographic Concepts
	Asymmetric cryptography
	Symmetric cryptography
	Message digests

	Digital signatures
	Certificates
	Message Integrity and User Authentication with XML Signatures
	XML Encryption
	XML Encryption Processing

	 An Introduction to Web Services Security
	Web Services Security is Born
	Web Service Standards and Architecture
	Reference Security Architecture
	Example Vendor WS Security Architectures

	XML Signatures & Encryption Example

	 Federated Identity and Authentication
	Federated Identity Management
	Web Services Federation (WS-Federation)
	Liberty Alliance
	Microsoft
	Federated Identity Standards
	Federated Identity Interoperability
	Federated Identity Management Example
	Gartner’s Hype Cycle for Identity and Access Management

	 Security Access Markup Language (SAML)
	Introduction to SAML
	SAML Example

	 A Citizen Request Example
	Communities of Interest Pattern

	 User Provisioning
	 SOA Firewalls for Web Security
	 Security Standards for Web Services
	 Web Services Message Stack Example

